12 research outputs found

    Formation of Precessing Jets by Tilted Black-hole Discs in 3D General Relativistic MHD Simulations

    Full text link
    Gas falling into a black hole (BH) from large distances is unaware of BH spin direction, and misalignment between the accretion disc and BH spin is expected to be common. However, the physics of tilted discs (e.g., angular momentum transport and jet formation) is poorly understood. Using our new GPU-accelerated code H-AMR, we performed 3D general relativistic magnetohydrodynamic simulations of tilted thick accretion discs around rapidly spinning BHs, at the highest resolution to date. We explored the limit where disc thermal pressure dominates magnetic pressure, and showed for the first time that, for different magnetic field strengths on the BH, these flows launch magnetized relativistic jets propagating along the rotation axis of the tilted disc (rather than of the BH). If strong large-scale magnetic flux reaches the BH, it bends the inner few gravitational radii of the disc and jets into partial alignment with the BH spin. On longer time scales, the simulated disc-jet system as a whole undergoes Lense-Thirring precession and approaches alignment, demonstrating for the first time that jets can be used as probes of disc precession. When the disc turbulence is well-resolved, our isolated discs spread out, causing both the alignment and precession to slow down.Comment: MNRAS Letters, accepted. Animations available at https://www.youtube.com/playlist?list=PL39mDr1uU6a5RYZdXLAjKE1C_GAJkQJN

    A Multi-scale View of the Emergent Complexity of Life: A Free-energy Proposal

    Get PDF
    We review some of the main implications of the free-energy principle (FEP) for the study of the self-organization of living systems ā€“ and how the FEP can help us to understand (and model) biotic self-organization across the many temporal and spatial scales over which life exists. In order to maintain its integrity as a bounded system, any biological system - from single cells to complex organisms and societies - has to limit the disorder or dispersion (i.e., the long-run entropy) of its constituent states. We review how this can be achieved by living systems that minimize their variational free energy. Variational free energy is an information theoretic construct, originally introduced into theoretical neuroscience and biology to explain perception, action, and learning. It has since been extended to explain the evolution, development, form, and function of entire organisms, providing a principled model of biotic self-organization and autopoiesis. It has provided insights into biological systems across spatiotemporal scales, ranging from microscales (e.g., sub- and multicellular dynamics), to intermediate scales (e.g., groups of interacting animals and culture), through to macroscale phenomena (the evolution of entire species). A crucial corollary of the FEP is that an organism just is (i.e., embodies or entails) an implicit model of its environment. As such, organisms come to embody causal relationships of their ecological niche, which, in turn, is influenced by their resulting behaviors. Crucially, free-energy minimization can be shown to be equivalent to the maximization of Bayesian model evidence. This allows us to cast natural selection in terms of Bayesian model selection, providing a robust theoretical account of how organisms come to match or accommodate the spatiotemporal complexity of their surrounding niche. In line with the theme of this volume; namely, biological complexity and self-organization, this chapter will examine a variational approach to self-organization across multiple dynamical scales

    Small steps for mankind: Modeling the emergence of cumulative culture from joint active inference communication

    Get PDF
    Although the increase in the use of dynamical modeling in the literature on cultural evolution makes current models more mathematically sophisticated, these models have yet to be tested or validated. This paper provides a testable deep active inference formulation of social behavior and accompanying simulations of cumulative culture in two steps: First, we cast cultural transmission as a bi-directional process of communication that induces a generalized synchrony (operationalized as a particular convergence) between the belief states of interlocutors. Second, we cast social or cultural exchange as a process of active inference by equipping agents with the choice of who to engage in communication with. This induces trade-offs between confirmation of current beliefs and exploration of the social environment. We find that cumulative culture emerges from belief updating (i.e., active inference and learning) in the form of a joint minimization of uncertainty. The emergent cultural equilibria are characterized by a segregation into groups, whose belief systems are actively sustained by selective, uncertainty minimizing, dyadic exchanges. The nature of these equilibria depends sensitively on the precision afforded by various probabilistic mappings in each individual's generative model of their encultured niche

    Sophisticated Inference

    Get PDF
    Active inference offers a first principle account of sentient behaviour, from which special and important cases can be derived, e.g., reinforcement learning, active learning, Bayes optimal inference, Bayes optimal design, etc. Active inference resolves the exploitation-exploration dilemma in relation to prior preferences, by placing information gain on the same footing as reward or value. In brief, active inference replaces value functions with functionals of (Bayesian) beliefs, in the form of an expected (variational) free energy. In this paper, we consider a sophisticated kind of active inference, using a recursive form of expected free energy. Sophistication describes the degree to which an agent has beliefs about beliefs. We consider agents with beliefs about the counterfactual consequences of action for states of affairs and beliefs about those latent states. In other words, we move from simply considering beliefs about 'what would happen if I did that' to 'what would I believe about what would happen if I did that'. The recursive form of the free energy functional effectively implements a deep tree search over actions and outcomes in the future. Crucially, this search is over sequences of belief states, as opposed to states per se. We illustrate the competence of this scheme, using numerical simulations of deep decision problems

    From generative models to generative passages: a computational approach to (Neuro) phenomenology

    Get PDF
    This paper presents a version of neurophenomenology based on generative modelling techniques developed in computational neuroscience and biology. Our approach can be described as computational phenomenology because it applies methods originally developed in computational modelling to provide a formal model of the descriptions of lived experience in the phenomenological tradition of philosophy (e.g., the work of Edmund Husserl, Maurice Merleau-Ponty, etc.). The first section presents a brief review of the overall project to naturalize phenomenology. The second section presents and evaluates philosophical objections to that project and situates our version of computational phenomenology with respect to these projects. The third section reviews the generative modelling framework. The final section presents our approach in detail. We conclude by discussing how our approach differs from previous attempts to use generative modelling to help understand consciousness. In summary, we describe a version of computational phenomenology which uses generative modelling to construct a computational model of the inferential or interpretive processes that best explain this or that kind of lived experience

    Socio-emotional concern dynamics in a model of real-time dyadic interaction: parent-child play in autism

    No full text
    We used a validated agent-based modelā€”Socio-Emotional CONcern DynamicS (SECONDS)ā€”to model real-time playful interaction between a child diagnosed with Autism Spectrum Disorders (ASD) and its parent. SECONDS provides a real-time (second-by-second) virtual environment that could be used for clinical trials and testingprocess-orientedexplanationsofASDsymptomatology.Weconductednumerical experiments with SECONDS (1) for internal model validation comparing two parental behavioral strategies for stimulating social development in ASD (play-centered vs. initiative-centered) and (2) for empirical case-based model validation. We compared 2,000 simulated play sessions of two particular dyads with (second-by-second) time-series observations within 29 play sessions of a real parent-child dyad with ASD on six variables related to maintaining and initiating play. Overall, both simuladistributions. Given the idiosyncratic behaviors expected in ASD, the observed correspondence is non-trivial. Our results demonstrate the applicability of SECONDS to parent-child dyads in ASD. In the future, SECONDS could help design interventions for parental care in ASDted dyads provided a better ļ¬t to the observed dyad than reference nul
    corecore